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a b s t r a c t

Beginning at low frequencies, asymptotically exact models of anisotropic coatings and linings with a
small ratio of the half-thickness to the longitudinal deformation scale are constructed. The requirement
on the conditions of contact with the substrate, where at least one of the boundary conditions must
contain a displacement component of the strain in explicit form is “non-classical” here. The action of the
coating/lining on a thicker body is approximated by impedance boundary conditions at the interface. The
error of the model is reduced to the third order for layered packets and to the sixth order for a single layer.
The physical limit of the applicability is the frequency of the first quasi-resonance in the corresponding
deformed system. A comparison with the propagator matrix and numerical testing for partial waves
shows satisfactory accuracy, comparable with the accuracy of the theory of classical plates of similar
order. The results can be used in contact problems and for rapid algorithms for calculating the spectrum
of the eigenwaves in half-spaces and thick layered plates with any number of coatings and linings. An
extension to the case of viscoelastic materials and nematic elastomers is given.

© 2010 Elsevier Ltd. All rights reserved.

An approximate description of the action of a thin layer using effective boundary conditions at the interface of media has been suc-
cessfully used to calculate electromagnetic fields for more than half a century.1,2 This idea is applied here to problems of the dynamics of
solids. Approximate models of single-layer coatings and linings were constructed earlier to solve contact problems3-5 and to model adhe-
sion properties5-10 using both asymptotic and numerical methods. Asymptotic integration was used to construct approximate relations in
isotropic coatings and linings,11,12 and also in thermoelastic anisotropic double-layer plates, pressed by rigid faces.13,14 All these models
were quasi-static and had a comparatively low order of accuracy. These approximations are of interest for problems of dynamics, where,
despite developed matrix methods of calculating wave propagation,15-19 the problem of carrying out an effective calculation of the spectra
of the eigenwaves in layered solids remains a pressing one. The main difficulties arise for composite structural components with complex
properties - a large number of layers, anisotropy of the materials and viscosity, and “non-traditional” behaviour of new materials, which
affects the speed of the algorithms and their stability at high frequencies.

The construction of analogs of the impedance boundary conditions (IBC) for one elastic and one electroelastic layer was limited to
extremely long waves,20-28 which does not enable many dynamic effects to be correctly described. A typical approach reduces to the
asymptotic expansion of the propagator matrices in a power series in the wave number, which is extremely cumbersome for subsequent
refinements. The use of Padé approximations and Magnus expansion29,30 enables an analog of the IBC of higher orders to be obtained, but
used components of different orders and does not guarantee a uniform asymptotic error in approximating the stress-strain state of the
coatings or linings.

Below we use asymptotic integration to construct the IBC for layered coatings and linings with an asymptotic error of up to the third
order and sixth order, when there is one layer. A general form of elastic anisotropy is admitted in the layer materials. The case of dissipative
materials, including the case of liquid-crystalline (nematic) elastomers31-34 is considered separately.

� Prikl. Mat. Mekh. Vol. 74, No. 3, pp. 403-418, 2010.
E-mail address: dd zakh@mail.ru.

0021-8928/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jappmathmech.2010.07.004

dx.doi.org/10.1016/j.jappmathmech.2010.07.004
http://www.sciencedirect.com/science/journal/00218928
http://www.elsevier.com/locate/jappmathmech
mailto:dd_zakh@mail.ru
dx.doi.org/10.1016/j.jappmathmech.2010.07.004


D.D. Zakharov / Journal of Applied Mathematics and Mechanics 74 (2010) 286–296 287

1. Asymptotic description of the internal stress-strain state of a packet with constrained faces

Consider a packet of N anisotropic elastic layers, where the j-th layer has a thickness Hj: Z ≡ X3, Zj ≤ Z ≤ Zj+1 (j = 1,2,. . ., N) occupying the

region −∞ < X1, X2 < ∞ in its plan. We will denote its stiffness matrix by Gj = ||gj
pg || and the density by �j. In obvious cases we will omit

the index of the layer. We will introduce the following notation: for longitudinal and transverse displacements U ≡ (U1,U2)T and W ≡ U3,
for the stresses �pq and the strains �pp = ∂pUp, �pq = ∂pUq + ∂qUq related by Hooke’s law. We will assume that the conditions of complete
contact at the layer interfaces is satisfied. We will specify the conditions on the faces Z− = Z1, Z+ = ZN+1 (Z+–Z- = 2h) in more detail later, but
we will have in mind that the inhomogeneous boundary conditions are non-classical and at least for one of the faces must contain at least
one component of the displacements U−

p or U+
p in explicit form, i.e., the problem is completely analogous to that considered earlier.11–14

We will investigate the internal stress-strain state in the layers, which satisfy the equations of motion (T is the time)

(1.1)

and we will obtain relations between the values of the stresses �∓
p3 and strains U∓

p on the faces Z = Z∓. We will assume the ratio of the
half-thickness of the packet h to the characteristic scale of the process L in the longitudinal direction to be a small parameter: � = h/L � 1
and we will proceed to dimensionless variables

Here �0 is the density scale, E0 is the characteristic modulus of elasticity (for example, the smallest of the shear moduli in the layers)
and � is the coefficient of dynamics, characterizing the timescale.

We will seek the strains and stresses in the form of formal asymptotic series

(1.2)

determining the variability factors � and � in subsequent considerations. It can be verified that the relations between the terms of the
series lose their recurrence when � > 1, so that we can choose the maximum possible value � = 1. Then the scale T0 corresponds to the least
period of shear waves in the packet. In the classical theory of Plates11,35,36 another parameter � = h/L0 � 1 often appears, where L0 is the
characteristic geometrical dimension of the body and the deformation scale L = L0�Q (0 < Q < 1). However, when considering the internal
stress-strain state the problem is reduced to expansion in powers of �1–Q = �.

We will normalize all the stiffnesses to E0, the densities to �0 and the thicknesses and displacements to h. We will introduce the following
dimensionless vectors and matrix operators

and the following additional notation, which will be convenient for calculating quantities at the interfaces

The minors G0j, G*j, G⊥j and G||j are obtained from the elements of the matrix Gj, situated at the intersection of the row numbers indicated
(the superscripts) and the column numbers indicated (the subscripts). By virtue of Eqs (1.1) and Hooke’s law, the dimensionless s-th terms
in expansions (1.2) satisfy the relations

(1.3)
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(1.4)

the interface conditions and the conditions on the faces (ı�+s+1
0 is the Kronecker delta)

(1.5)

(1.6)

Hence, the strains and stresses are found from the recurrence formulae (1.3)–(1.6) by successive integration over the thickness for s = 0,
1, ....

2. Boundary relations for s = 0, 1, 2

We will derive relations which enable us to establish the stress-strain state from the values on the faces. For s = 0 we have

whence we have the following equalities

(2.1)

For s = 1

and the following relations hold

(2.2)

Equalities (2.1) and (2.2) contain no time derivatives, i.e., they are quasi-static. The wave operator Aj appears when s = 2, which leads to
expressions for the displacements
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and the stresses

with operators

On the faces we obtain the relations

(2.3)

Summing over s = 0, 1, 2, we arrive at a dimensional form of the symmetrical boundary relations (2.1)–(2.3)

(2.4)

with a relative asymptotic error O(ε3) with respect to the order of neglected terms. With the same accuracy, we obtain from equalities
(2.1)–(2.3) the following equivalent asymmetrical boundary relations

(2.5)

(2.6)

No specific values of � have yet been used. They can, in principle, be determined from additional information. For example, knowing
that when � → +0 in formulae (1.6) d∓ = O(1), we obtain � = −1. This is not essential for a further discussion since relations (2.4)–(2.6) for
coatings and linings hold for any order of �, produced when thick deformed bodies with thin coatings and linings interact.

3. Impedance boundary conditions for layered coatings and linings

We will now consider the contact between a thin packet and thicker elastic bodies - half-spaces or plates. We will assume that the
characteristic scale in a thick body is comparable with the value of L, and the values of the densities and other parameters in the body are
comparable with the values for the packet (which can also be achieved for fairly small ε). The scaling of the variables in the thick body is
then only changed for the transverse coordinate z = Z/L, i.e., scaling does not change the form of the elasticity relations and the equations of
motion. Nevertheless, the displacements and strains in the thicker solid may be represented in the form of asymptotic series in powers of
ε by writing the contact conditions for the corresponding terms in the thin packet; but the equations for the s-th terms of the series in the
thick solid are similar to the usual relations and the equations of the theory of elasticity, and are not by themselves recurrence relations.
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Hence, the specification, for example, of the ideal condition of contact with one or two more thick solids in the form of continuity
of the displacements and the transverse stresses does not distort the asymptotic integration procedure described in Sections 1 and 2.
Consequently, in the impedance boundary conditions (2.4)–(2.6) the quantities t±

z and d± may denote displacements and stresses in elastic
substrates (if there are two), or one of them may correspond to an elastic substrate, while the other is the specified boundary condition on
the face. The asymptotic accuracy of the impedance boundary conditions then remains as before. Depending on the type boundary-value
problem set up for an approximate description of the action of the lining (coating), one can choose both equalities (2.4) or one of the
equalities (2.5), (2.6), and then find the solution of the three-dimensional equations for the thick solid. One can similarly derive relations
for a slipping contact with slipping, friction, etc.

The impedance boundary conditions obtained are not independent equations; they are relations between boundary values which do
not have additional degrees of freedom. As h → 0 impedance boundary conditions (2.4)–(2.6) give the usual conditions of continuity of the
displacements and stresses on the interface, or equality of the displacements or stresses in a thick solid with specified perturbations on
the face. The fact that the impedance boundary conditions for a packet were constructed for inhomogeneous boundary conditions on the
faces does not limit the generality. In particular, they are completely applicable to the problem of determining the eigenwaves and spectra
in a thick solid with coatings/linings in a reasonable frequency band 	. Here the thicker solid is the source of a perturbation for the packet
(in displacements, i.e., simultaneously it acts as a limiter). The physical basis for the impedance boundary conditions to be applicable is
the difference in scales: in the scale of the coating or the lining it is necessary to remain in the low-frequency region 	h/c0 � 1, but in
the scale of the thick solid this is not necessary, i.e., for its half-thickness h* and the least velocity c* is sufficient to satisfy the inequality
	h/c0 � 	h*/c*.

In the limit situation for a layer, inhomogeneous over the thickness, with a rigid limiter, as is well known, there are no fundamental
modes in the low-frequency range. In this case, in the asymptotic model of the layer there are also no independent differential equations.
A qualitatively different situation can be expected for contrast media, where the limiting case of a stiff layer in a soft medium leads to the
equations of motion of a thin plate (see Refs. 37–41 for “classical” contrast layered plates), which is outside the scope of this paper.

4. Impedance boundary conditions for a single layer

For one layer the impedance boundary conditions can be simplified considerably, since j = 1,
∑

∓ = 0 and, continuing the iterations, one
can obtain relations for orders s = 3, 4, 5. Omitting the intermediate consider, we will present dimensional relations with an asymptotic
error O(�6) for symmetrical impedance boundary conditions

(4.1)

and asymmetrical impedance boundary conditions

(4.2)

(4.3)

with the corresponding matrix differential operators
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Note some structural features of the impedance boundary conditions: transposition of the operators on the left-hand sides of equalities
(4.2) and (4.3) and the increase in the degree of the wave operator for s = 2, 4, ..... For s = 3, 5, ... the correction contains derivatives with
respect to the longitudinal coordinate of the operators of the previous iteration. The operators of the impedance boundary conditions
include both the stiffness matrices of the material and the compliance matrices in the transverse direction.

The quasi-static impedance boundary conditions of orders s = 0 and s = 1 do not differ from those obtained by other researchers and by
other methods.5-14,23-25 We will now compare the propagator matrices obtained using impedance boundary conditions (4.1)–(4.3) and
using the method of expanding the propagator matrix of the partial waves exp[i(kX − 	T)] with respect to the wave number, taking into
account the components of higher orders.21,29,30 We will express the normal derivatives of d and tz from the equations of elasticity and
Hooke’s law in dimensional form ∂T → iω, ∂X˛ → ik˛

and consider the impedance boundary conditions, beginning with s = 2. From relations (4.2) and (4.3) we express the values of 
 on the
faces and obtain an approximation Bii of the exact propagator matrix B(h) = e2hA

* for a single layer j = 1

The approximate matrix Bii contains a section of a power series for B(h), and the last iterations refine this approximation. Unlike the
approximation for Bii, obtained earlier,20,21,29,30 the approximation proposed here takes into account the non-zero matrices O2 and O3,
which provides the same asymptotic accuracy of the displacements and stresses.

5. The case of a dissipative material

When deriving the impedance boundary conditions we assumed that the materials of the layers are elastic. We will now assume that

energy dissipation is possible in the layers, for example, in accordance with the Kelvin–Voight model �pj =
{

g′j
pq + g′′j

pq∂t

}
εqj , where

||g′j
pq|| is the tensor of elastic constants, while ||g′′j

pq|| is the tensor of viscosity coefficients. The latter is assumed to be small with relaxation

times �j
pq = g′′j

pq/g′j
pq � 1 and, in the case of a time dependence in the form e−i	t

up to frequencies of the order of ω�j
pq = 2	�j

pq/T0 = O(1), and also somewhat longer relaxation times �j
pq∼L/c0. This does not change the

asymptotic derivation procedure, and in formulae (2.4)–(2.6) and (4.1)–(4.3) we can put Gj = Gj(ω), �pj = gj
pqεqi. Strictly speaking, for small

	, comparable with �, on the right-hand side of formulae (1.3) and (2.4) we must drop higher-order terms, which appear due to the
viscosity. Retaining these terms, we simplify the derivation and we sum all the additional components of the corresponding asymptotic
series into compact expressions with a matrix of the complex moduli Gj(	).

We will assume, for example, that for one layer (j = 1) the stiffness matrix has the following expansion in powers of �

(5.1)

Then the dimensionless recurrence relations (1.4) and (1.5) are replaced as follows:

Relations (2.1) are not changed, while (2.2) and (2.3) take the form

(5.2)

(5.3)

Summing the sections of the series
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we obtain from relations (5.2) and (5.3)

which, in dimensional variables, gives a difference O(�3) from the impedance boundary conditions (4.1) for s = 0, 1, 2. The consideration of
higher orders and layered packets is similar.

In the final impedance boundary conditions, derived with an error O(�n), due to the matrix Gj(	) terms of the order of the same error are
added. The derivation procedure also does not break down in the case of a non-linear relation Gj(	) if expansion (5.1) occurs; an important
difference arises when the “viscous” and “elastic” components are comparable.

In particular, the non-linear relation Gj(	) may correspond to such a non-traditional material as a liquid-crystalline nematic elastomer,
which is of interest both for applications in biomechanics and medicine, and as a possible matrix for nanocomposites. A review of the
literature on the properties of nematic materials can be found in Refs 31 and 32. For these, the presence of viscosity and additional internal
degrees of freedom with respect to relative rotation around the main axis of orientation of the molecules n (the “director”), situated, to be
specific, in the direction of the x3 axis, is characteristic. In the low-frequency region for other constant physical conditions (temperature,
pressure, etc.) the material is characterized by eleven constants: the density, five independent components of the matrix G′

j (similar to
transversal isotropy with anisotropy axis n) for elastic processes and one relaxation time �R, and two stiffnesses with respect to rotation’s
D1 and D2 with relaxation times �1 and �2. The equations of rotation can be assumed to be quasi-static.32 For the purposes of this paper,
it is important that, as was shown in Refs 33 and 34, this type of elastomer can be simply described as a compressed viscoelastic material
with a renormalized matrix Gj(	) with non-zero elements

where

(5.4)

Hence, the impedance boundary conditions can also be used to describe a nematic lining or coating on the assumption that 	 max(�1,
�2, �R) � 1.

Fig. 1.
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6. Results of numerical testing of the impedance boundary conditions

Since, when investigating eigenwaves and spectra, partial waves are the main tool, we will compare the amplitudes of the partial waves
obtained using the exact matrix method15-19 and the asymptotic impedance boundary conditions. We will consider the lining between
two isotropic half-spaces. Suppose a plane harmonic P-wave or an S-wave

with amplitude Min is incident from the upper half-space (in which all the quantities are given a plus superscript) on to the interface of the
media at a certain angle �in. Then, in the upper half-space we obtain reflected P- and S-waves (Pr and Sr), in the lower half-space (where
quantities are given a minus subscript) we obtain the two transmitted waves (Pt and St), and in each layer there are direct and reflected
waves with a propagation direction given by Snell’s law. There are corresponding calculations (see, for example, Ref. 19), but they are
omitted here. In the approximate solution the incident and reflected waves in the upper half-space (Z = Z+) and in the lower half-space
(Z = Z-) are related by approximate impedance boundary conditions (2.4). We will take as the accuracy criterion the root mean square of
the relative error

where Mex is the complex amplitude of the corresponding exact solution, while Mas is the amplitude of the approximate solution when
summation is carried out over all waves in the half-spaces.

We can similarly consider the upper half-space with the coating. For a stress-free coating surface we use impedance boundary conditions
(2.5) in the approximate calculation. A comparison was carried out for the reflected Pr and Sr waves. For a fixed face coating we use the
impedance boundary conditions (2.6) in the approximate calculation.

Fig. 2.
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In the calculations we took the following typical parameters for metals (Al)

isotropic plastics (Po)

and orthotropic plexiglass (Eg)

The cross-ply packet consists of two orthotropic layers. We varied the isotropic materials in the substrate, the type of incident waves
and the angle of incidence.

In Fig. 1 we show the dimensionless amplitudes of the exact solution (the upper part of Fig. 1) and the relative error e (the lower part of
Fig. 1), for the incidence of an S-wave at an angle of 70◦ to the interface of the upper medium Al and the lower medium Po with a lining of
two layers of Eg (cross-ply with a rotation of the principal orthotropy axes of 0◦ and 90◦ respectively; H1 = H2). Along the horizontal axis
we show the scale R = H1/L1 + H2/L2, where L1 and L2 are the least of the characteristic wavelengths in each layer. The graphs in the lower
part of Fig. 1 are given for a medium of Al with the same coating with a free boundary. The number’s on the curves n correspond to the
asymptotic error O(�n). For an error e ≤ 1% the value of R is greatest for the impedance boundary conditions of a rigidly clamped face and
least for the impedance boundary conditions of a free surface (2.5); for the impedance boundary conditions of the lining (2.4) this value is
intermediate between the two. For quasistatic impedance boundary conditions, taking into account terms with n = 0 and 1, the width of
the interval of applicability varies in the range from 1/500 to 1/200, and for n = 2 it increases, varying in the range from 1/100 to 1/20.

When testing the impedance boundary conditions for a single layer we varied the orientation of the principal orthotropy axes of the
layer with respect to the coordinate axes. Typical graphs of exact values of the amplitudes and relative error e with an indication of the
orientation of the main anisotropy axis 1 with respect to the x1 axis are shown in the upper part of Fig. 2. They correspond to the incidence
of an S-wave at an angle of 80◦ to the interface of the Al and Po media with a lining of Eg at an angle of orientation of the axes of 0◦. The
graphs in the lower part of Fig. 2 are for Al with the same coating and with a free boundary.

The width of the interval of applicability, which gives an error of no greater than 1%, increases sharply for a single layer. For n = 1 and
n = 2 it ranges from 1/50 to 1/30, and increases to 1/10 for n = 3 and n = 4, and to 1/6 for n = 5 and n = 6. As stated above, the impedance
boundary condition of the lining (4.1) gives an intermediate value of the width of the interval of applicability between the values in the
case of the impedance boundary conditions of a rigid clamping (4.3) and a free surface (4.2). It follows directly from formulae (2.4)–(2.6) for
a packet that they are converted into impedance boundary conditions (4.1)–(4.3) in cases when the materials of the layers are the same, or
when the thickness of each layer in the packet, apart from one, approaches zero. This fact can also be seen in the numerical calculations, if,

Fig. 3.
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for example, one of the layers is much thicker than the others. Moreover, impedance boundary conditions (2.4)–(2.6) and (4.1)–(4.3) do not
distort the balance of the power flows, averaged over a period, i.e., when the waves pass through the lining or the coating, no absorption
or dissipation of energy occurs. Hence, the impedance boundary conditions obtained also describe wave effects in the case of the same
materials, and when the stiffness of the lining or the coating increases, which is also confirmed by numerical tests. Of course, it is not
possible to obtain the limit case of the equations of the oscillations of a stiff plate in a soft medium, by this way.

For a single-layer coating and lining of nematic material (Ne) we took the following values of the parameters:31-33

(or D2
2/(4D1) = g′

44, which is called an ideal case, since, according to relations (5.4) gR
44(0) = 0, ... it corresponds more to the behaviour of

a liquid crystal). The values g′
11, g′

12, g′
13, g′

33 are close due to the high bulk compression modulus. The anisotropy axis was oriented along
each of the coordinate axes alternately, and the materials of the substrate were the same as before. Typical graphs of the amplitudes and
relative error are shown in the upper part of Fig. 3 for the case of an S-wave, incident at an angle of 70◦ on the interface of Al and Po with
a lining of Ne with an angle of orientation of the principal axes of 0◦. The graphs in the lower part of Fig. 3 are for Al with the same coating
and with a free boundary (a non-ideal nematic material).

The error e changes only slightly depending on the orientation of the principal axes of the nematic medium, but for all the impedance
boundary conditions the range of applicability is greater than for the case of an ideally elastic material, which may be due to the effect of
viscosity. Note that the iteration s = 2 may be more accurate than the later ones, but this effect occurs in the frequency range when the
approximate description of the nematic medium, proposed earlier in Refs 33 and 34, is not valid.

7. Conclusions

We have constructed an approximate asymptotic model of elastic coatings and linings of high order of accuracy for elastic and viscoelastic
materials. Its main result is the possibility of replacing the action of the coating or lining to a thick solid by formulating effective impedance
boundary conditions at the interfaces. Physically this can be explained by the absence at low frequencies of propagating modes in the layer
with “restricted” conditions on the faces, i.e., when at least one of the displacements vanishes on at least one of the faces. The results for the
low-order model are identical with the results of other researchers. The presence of higher orders is important, since the first orders only
give a quasi-static approximation. The sixth-order model is low-frequency, but is possibly not the long-wave model. The accuracy of the
impedance boundary conditions for laminated packets is much lower than the accuracy for a single-layer coating (lining) and recalls the
classical theory of Kirchhoff plates. For one layer the accuracy of the impedance boundary conditions, even for the second iteration (due
to the occurrence in the relations of wave operators) is similar to the accuracy of the results of the Timoshenko–Reisner theory of plates;
here the model itself is relatively compact. The limit of the range of applicability of the impedance boundary conditions for this case is
the first frequency of natural quasi-resonance. The next iterations look more cumbersome, but the range of applicability is increased. The
method enables one to construct a model of any asymptotic accuracy, but each step in the recurrence procedure increases the accuracy by
one order. This is less than in the theory of plates with monoclinic anisotropy or in the impedance boundary conditions for a liquid lining,
where this step comprises two orders.41,42 Another characteristic feature of the model is its qualitative improvement for even iteration
indices (since, in this case the wave operators are raised to a power), whereas odd iterations correct the result of the previous step by
additional differentiation with respect to the longitudinal coordinates.

Results similar to those derived for conditions of complete interface contact and a free or rigidly clamped face may be obtained for
impedance boundary conditions involving slippage, friction, etc.
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